

1

Sound & Light Machine

Firmware Documentation
For Sound & Light Machine article in MAKE Magazine #10

By Mitch Altman

Firmware is the computer program that controls a microcontroller. [Why not call it software?
Firmware is somewhere between software and hardware it is a software that directly controls
hardware]. In this project we converted the MiniPOV into a Sound & Light Machine (SLM) simply
by changing the firmware, along with some minor hardware changes.

This document is intended to teach you enough about the SLM firmware to be able to create your
own brainwave sequences. The next section (Overview of the SLM firmware) is all you really
need to read. But if you are interested in learning more about how the firmware works, I have
also given plenty of extra detail.

Firmware is actually a bunch of lines of text in a file, written with a text editor. Collectively the
lines of text tell the microcontroller exactly what to do. To program the microcontroller with the
firmware it is convenient to use a special script file called a makefile. (For this project, the
makefile runs a C compiler, an assembler, a linker, an object converter, and programming
software -- but you don t really need to understand any of this since the makefile does everything
for you.)

Overview of the SLM firmware

The microcontroller for the SLM comprises most of the hardware for the SLM, and is used
primarily as a timing device to output square-waves that pulse LEDs in front of each eye and
speakers for each ear. The SLM firmware tells the microcontroller exactly how to create a
sequence of these square-waves for blinking LEDs and pulsing speakers at brainwave
frequencies. The sequence of square-waves mimics the sequence of a brain s frequencies as it
goes into desired states of consciousness. The SLM firmware that I wrote generates a sequence
that starts from a state of being awake, goes into deep meditation, hangs out there awhile, and
then into being awake again (feeling wonderful).

The SLM s brainwave sequence is determined by a table called the Brainwave Table at the
beginning of the SLM firmware. The Brainwave Table contains several Brainwave Elements .
Each Brainwave Element consists of a Brainwave Type (Beta, Alpha, Theta, or Delta) and a
Brainwave Duration (which is how long to play this Brainwave Type, before doing the next

Brainwave Element in the table). To change the SLM s brainwave sequence, simply change the
Brainwave Table in a text editor, save the file, and run the makefile (as described in the article).

The Brainwave Table on page 8 is an easy-to-read representation of the actual table in the
firmware that I created for the meditation sequence. The actual table in the firmware is shown on
pages 12 and 13, called brainwaveTab . You can see how it correlates to the more readable
one on page 8. b is for Beta, a is for Alpha, t is for Theta, and d is for delta. The last element
must have 0 for its brainwave Type (to tell the firmware that it reached the END of the table).
The times to play each brainwave (the Durations) are given in units of 1/10 milliseconds

divide
the desired durations by 10,000 to get these values in brainwaveTab.

CAUTION: Please do not use the SLM if you are, or think you may be prone to seizures. Also,
please be aware that certain conditions, such as ADHD, can worsen by entraining to lower
brainwave frequencies. If you experience any problems, please discontinue using this SLM.

2

The above is really all you need to know to create your own brainwave sequences.

The rest of this document gives more in-depth explanation of how the SLM firmware does its
thing.

Some words about the microcontroller

The microcontroller used in this project is the ATTINY2313, made by Atmel. It is part of their AVR
family of microcontrollers. The datasheet for this chip can be downloaded from Atmel s website:
http://www.atmel.com/dyn/resources/prod_documents/doc2543.pdf

Although many different microcontrollers are well suited for performing the tasks necessary for a
Sound & Light Machine, the Atmel AVR family of chips has many advantages. One of them is
that there is no need to buy a programmer for these chips, since it has a built in programmer all
you need is a computer with a serial port (or a USB connector and an inexpensive USB-to-serial
converter) and some software. Another advantage is that all of the software necessary for
programming the chip is free and open source. A free C-language compiler is available, so no
one needs to learn the AVR assembly language [Assembly language is the low-level language
that microcontrollers understand and that all firmware used to be written in. Each microcontroller
family has its own firmware language. When you compile a C program a compiler creates
assembly language that the micro runs. Well, that s not quite accurate actually, assembly
language is for (very geeky) humans, whereas the micro runs on machine language, which is the
binary numbers stored in program memory that the assembly language represents. There is
another piece of software called an assembler that converts assembly language to machine
language]. Another really wonderful advantage is that there is a user forum called AVRfreaks.org
that, 24/7, is full of geeks that love answering questions you may have about using the AVR
family of micros. Being new to AVR chips, I made use of the user forum when I came up against
a problem I needed help with. At 11pm I posted my question, and by 11:30pm someone pointed
me to info where I could solve my problem. Sweet!

Most software for designing hardware and creating firmware is made for PCs running Windows.
Another nice aspect of using AVR chips is that all of the software needed is available for
Windows, Mac OS, and Linux.

Brainwave Frequencies the SLM firmware will generate

Brains generate brainwaves across a frequency spectrum. The spectrum is divided into four
bands: Beta, Alpha, Theta, Delta. [More recently a fifth brainwave band has been added:
Gamma, but we are sticking with the original four for this project, since they are more well
understood, and we can accomplish a lot with just these four.] For the SLM I have chosen one
frequency for each Brainwave Type. See the table on the next page:

http://www.atmel.com/dyn/resources/prod_documents/doc2543.pdf

3

Type Band Frequency

used in SLM Associated States

Delta waves ½Hz to 4Hz 2.2Hz deep unconscious,
intuition and insight

Theta waves 4Hz to 8Hz 6.0Hz subconscious,
creativity, deep relaxation

Alpha waves 8Hz to 13Hz 11.1Hz spacey and dreamy,
receptive and passive

Beta waves 13Hz to 30Hz 14.4Hz conscious thought,
external focus

Generating Square-Waves with the microcontroller

LED square-wave timing

The square-waves for pulsing the LEDs for each eye are generated by a timing loop in the
firmware. Within this timing loop the firmware manually toggles microcontroller output pins.
[Toggling means: if the output pin was High, clear it to Low; and if the pin was Low, set it to
High.] Each LED is connected to an output pin on the microcontroller. The firmware toggles
these output pins together, so that the LEDs connected to these output pins will pulse exactly the
same.

As an example of how the LED timing works, let s say that we wish to blink the LEDs for the eyes
at the Beta frequency of 14.4Hz. This means that the LEDs at each eye should blink High and
Low 14.4 times per second. This means that the LED should toggle High and Low every 0.0347
seconds (which is 34.7 milliseconds, or 34.7ms). Here s the math:

The Duration of the LED blinking High and then Low (one cycle, or the period):
1 / 14.4Hz = 0.0694 sec = 69.4ms

The duration for ½ the period (this is the duration of the High and the duration of the Low):
69.4ms / 2 = 34.7 ms

Since the microcontroller s datasheet tells us how long it takes for the microcontroller to perform
each instruction, we can write a loop of code that does nothing but delay for this length of time.
Then, to toggle the LED at the Beta frequency, we turn the LED on (by setting the output pin of
the microcontroller to High), delay for 34.7ms, and then turn the LED off (by clearing the output
pin to Low), delay for 34.7ms, and repeat this process.

Speaker square-wave timing

We could do a similar thing for the audio, but the timing would get complex, since the brainwave
audio should be binaural beats (as explained in the SLM article), rather than simply pulsing at
brainwave frequencies. Fortunately, the microcontroller has some built-in functionality that
greatly simplifies our task of creating the binaural beat frequencies at the speakers.

The microcontroller used in the SLM project has two hardware timers built into it. The SLM
firmware makes use of these two timers to create the binaural beats. One timer, called Timer 0
(or T0), is set up to generate a Base Frequency of about 400Hz that is fed into one ear s speaker.
The other timer, called Timer 1 (or T1), is used to generate Offset Frequencies that are fed into
the other ear s speaker. When the Offset Frequency in one ear is heard together with the 400Hz
in the other ear, the listener hears a beat frequency of the desired brainwave frequency. To get a
beat frequency of 14.4Hz, T1 is configured to output about 414.4Hz.

4

Once the firmware starts T0 and T1, they will generate square-waves on their own, without
firmware intervention, until the firmware tells the timers to stop.

The Microcontroller s Hardware Timers (details)

Here are the nitty-gritty details of how the firmware sets up the microcontroller s two hardware
timers to output binaural beats.

Both of the timers in the microcontroller can be set up in various modes, according to the
specifications in the microcontroller s datasheet. To create square-waves for the sound that
feeds into the headphones, the firmware sets up the timers in a mode that toggles each timer s
output pin for every time the timer times out (explained more, below). The datasheet calls this
CTC mode (which they say stands for Clear Timer on Compare Match). In this mode, there is a
Compare Register where the timing value is stored. The Timer counts upward from 0, one count
for each clock (more on the clock, below). When the Timer reaches the value in the Compare
Register (which is called timeout , the output pin for the Timer is automatically toggled, and the
timer starts counting upward from 0 again. The clock frequency is determined by the clock of the
microcontroller and the Prescaler. In this project, we use the microcontroller s internal clock
oscillator, which is set up to run at 8.0MHz. This frequency can be divided down by a Prescaler,
which can divide by powers of 2: 1, 2, 4, 8, etc., up to 256. The formula for determining the
output square-wave frequency, Fo, for the timer s output pin for this mode (as given in the
datasheet) is:

Fo = Fclk / (2 * P * (1+C))
where

Fclk = 8,000,000Hz
P = Prescale value
C = Compare Register value
Fo = output square-wave frequency

Each timer (T0 and T1) can be set up independently. Each has its own output pin.

As an example, let s see how to use the two timers to generate Beta binaural beats. To generate
the Base Frequency of about 400Hz, T0 is used with T0 Prescale = 256 and T0 Compare
Register = 38, resulting in Fo = 400.641Hz (this is the closest we can get to 400Hz). The Offset
Frequency for binaural beats is generated in T1, with T1 Prescale = 1, and T1 Compare Register
= the appropriate value to generate the Brainwave Type. To get a binaural beat of about 14.4Hz
(the Beta frequency), we need to set T1 to output 14.4Hz higher than the frequency of T0, which
comes to 415.041Hz. Using the above formula to get as close as we can to 415.041Hz, we set
the T1 Compare Register to 9637, giving an output frequency of 415.024Hz. The perceived beat
frequency will be:

415.024Hz - 400.641Hz = 14.383Hz
which is pretty close to 14.4Hz.

Given a Base Frequency of 400.641Hz (generate on T0), below is a table which shows the value
of the T1 Compare Register for creating an Offset Frequency as close as we can get for each of
the four Brainwave Types (OCR1A is how the datasheet abbreviates the T1 Compare Register).
See the table on the next page:

5

Type OCR1A

Offset
Frequency

Fo

Difference from
400.641Hz

Base Frequency

Delta waves 9928 402.860Hz 2.219Hz

Theta waves 9836 406.628Hz 5.987Hz

Alpha waves 9714 411.734Hz 11.093Hz

Beta waves 9637 415.024Hz 14.383Hz

Timing the LEDs and Speakers together

To play a given Brainwave Type for a certain Duration, the firmware starts T0 at the Base
Frequency of 400.641Hz (which goes to one speaker), then starts T1 at the Offset Frequency for
the given Brainwave Type (which goes to the other speaker), and the user hears the binaural
beats for the given Brainwave Type. The firmware then keeps T0 and T1 going for the given
Duration (the timing for the Duration is accomplished by a delay loop, which is described in the
next paragraph). This takes care of the sound. What about the blinking lights?

Recall earlier that we would use a delay loop for creating the square-waves for blinking the LEDs.
We can use this same delay loop for waiting the specified Duration for the given Brainwave
Element. Cool, yes? While the hardware timers are playing the binaural beats, we just keep
blinking the LEDs with the timing loop for the given Duration. Then we ve accomplished creating
binaural beats for a given Brainwave Type, along with blinking lights at the same Brainwave
Type, played for a given Duration.

An example should make this clear. If we want to play Beta frequencies for 60 seconds, the
firmware does the following:

Start T0 to toggle one ear at the Base Frequency of 400.641Hz
Start T1 to toggle the other ear at the Offset Frequency of 415.024Hz
Manually toggle the LEDs at each eye at 14.4Hz using the delay loop
Keep manually toggling the LEDs until all of the delays in the delay loop

add up to 60 seconds (how to do this will be described later)

After the Duration of 60 seconds is over, the firmware could then stop manually toggling the LEDs
to turn off the lights, and then turn off T0 and T1 to stop the sound at the speakers. Or, the
firmware could start a different brainwave frequency playing at the LEDs and speakers for
another Duration.

Generating A Brainwave Sequence with SLM firmware

The sequence of Brainwave Elements in the Brainwave Table is what determines the brainwave
sequence generated by the SLM.

The firmware starts by playing the first Brainwave Element from the Brainwave Table. It does this
(as described above) by starting T0 at the Base Frequency, starting T1 at the Offset Frequency
for the Brainwave Type (given in the Brainwave Element), and allows the timers to continue for
the Duration (given in the Brainwave Element) while blinking the LEDs at a rate for the given

6

Brainwave Type. Then (leaving T0 playing the Base Frequency) it grabs the next Brainwave
Element from the Table, sets up T1 for the new specified Brainwave Type and plays it, along with
blinking the LEDs at the new Brainwave Type s frequency, and plays it for the new specified
Duration. Then (leaving T0 playing the Base Frequency) it grabs the next Brainwave Element
from the Table. Etc.

This process continues till there are no more Brainwave Elements in the Brainwave Table. Then
the firmware turns off both T0 and T1, stops manually toggling the output connected to the LEDs,
and puts the microcontroller into a low-power mode.

(An easy-to-read representation of the Brainwave Table I created for the meditation sequence is
shown on page 8.)

We can state the above more concisely by being a bit more geeky about it:

Initialize hardware and variables

start Timer 0 with Base Frequency into speaker #1

Do
get next Brainwave Element (consisting of Type and Duration) from brainwaveTab
start Timer1 with binaural beat Offset Frequency for Brainwave Type into speaker #2
blink LEDs at brainwave frequency for the Brainwave Type
and wait for the specified Duration

Until end of brainwaveTab

stop Timer 0 and Timer 1 to stop sound at both speakers
turn off LEDs
put microcontroller to sleep (low-power mode)

Let s get a little bit more geeky, and state things more in the way our specific microcontroller likes
to see things (according to the datasheet). First of all, here is how the hardware is set up:

1 LED for each eye:
 LED #1: PB0 (pin 12)
 LED #2: PB1 (pin 13)

1 speaker for each ear:
 speaker #1: 0C0A / PB2 (pin 14)
 speaker #2: 0C1A / PB3 (pin 15)

7

And here is the algorithm for the firmware:

Main:
Initialize

set Port B for outputs (DDRB = 0xFF)
setup Timer 0 for CTC mode and for toggling OC0A (which is Timer 0 s output pin)
start Base-Frequency square wave = 400.641Hz on Timer 0

 (Prescale = 256, OCR0A = 38) to output sound to OC0A (connected to speaker #1)
setup Timer 1 for CTC mode and for toggling OC1A (which is Timer 1 s output pin)

(Prescale = 1, OCR1A not set yet)

MainLoop:
get next brainwaveElement (which consists of a brainwaveType and a brainwaveDuration)
if brainwaveType = 0, then quit the MainLoop (when brainwaveType = 0 we are done)
otherwise, do the following:

start T1 square wave = binaural beat offset for the brainwaveType
 (0CR1A=Offset Frequency for brainwaveType) to output sound to OC1A (connected to

speaker #2)

loop to blink LEDs at PB0 and PB1 at correct timing for the brainwaveType
keep looping for brainwaveDuration

endofMainLoop

stop Timer 0 and Timer 1 to stop sound at both speakers
turn off both LEDs
put processor to sleep (low-power mode)

The actual firmware is given starting on page 11. It is described in more detail starting on page 9.

How to specify a brainwave sequence for this SLM

Since we can only generate one brainwave frequency at a time in this SLM project, we need to
create a brainwave sequence that tries to keep your brain active at various brainwave
frequencies by going back and forth between two brainwave frequencies. For example, if we
want to go from fully awake to somewhat dreamy, we would generate Beta for awhile, then Alpha
for awhile, and go back and forth between Beta and Alpha, but reducing the length of Beta and
increasing the length of Alpha with each iteration.

Another thing to keep in mind when creating your own brainwave sequence is to start by meeting
your user where they are at and then take them where they want to go. For example, if you want
to create a sequence to bring people to sleep, then start with being awake and conscious (Beta),
then, after awhile, start adding some spaceyness (Alpha).

The brainwave sequence for meditation that I created uses the above techniques. The
Brainwave Table for it is given on the next page.

CAUTIONS: BLINKING LIGHTS SHOULD BE AVOIDED BY ANYONE
PRONE TO SEIZURES. If you are sensitive to seizures, please
disconnect the LEDs in this project (your brain will effectively entrain with
the binaural beat audio alone). CERTAIN CONDITIONS, SUCH AS
ADHD, CAN WORSEN WITH THETA AND DELTA ENTRAINMENT.
Please discontinue using this SLM if you experience any problems.

8

Brainwave Table

(Meditation sequence)

Element number Brainwave Type Brainwave Duration (sec.)
1 Beta 60
2 Alpha 10
3 Beta 20
4 Alpha 15
5 Beta 15
6 Alpha 20
7 Beta 10
8 Alpha 30
9 Beta 5
10 Alpha 60
11 Theta 10
12 Alpha 30
13 Theta 20
14 Alpha 30
15 Theta 30
16 Alpha 15
17 Theta 60
18 Alpha 15
19 Beta 1
20 Alpha 15
21 Theta 60
22 Delta 1
23 Theta 10
24 Delta 1
25 Theta 10
26 Delta 1
27 Theta 30
28 Alpha 15
29 Beta 1
30 Alpha 15
31 Theta 30
32 Alpha 15
33 Beta 1
34 Alpha 20
35 Beta 5
36 Alpha 20
37 Beta 15
38 Alpha 15
39 Beta 20
40 Alpha 10
41 Beta 25
42 Alpha 5
43 Beta 60
44 END Total = 856 sec (about 14¼ min)

9

Description of the actual SLM firmware

I ll start the description with the Brainwave Table (somewhat near the top of the firmware). It is
called brainwaveTab in the firmware. The brainwaveTab contains several lines, each of which
is a brainwaveElement . Each brainwaveElement consists of a bwType (b for Beta, a for
Alpha, t for Theta, d for Delta) and a bwDuration (which is expressed in an odd time to get
seconds, divide the number by 10,000). The last brainwaveElement must have 0 for its bwType
to indicate the END of the brainwaveTab.

Now let s look at the bottom of the firmware to the main function. The main function starts by
initializing the hardware registers of the microcontroller: no interrupts [interrupts are a way for
hardware to call a function when an event happens

we aren t using interrupts in the SLM
firmware], set all pins to outputs, and make sure that all of these output pins are Low. Then start
T0 to output the Base Frequency using CTC mode, toggling output pin OC0A (connected to
speaker #1). Then set up T1 to output the Offset Frequency (but we won t start T1 here we
start T1 in the do_brainwave_element function, as described in its paragraph, below). Then there
is a loop that grabs each brainwaveElement in brainwaveTab, sending each brainwaveElement to
the do_brainwave_element function to do the work. The loop finishes if it finds a
brainwaveElement with a bwType of 0 . Once we ve gone through the entire brainwaveTab, the
firmware stops T0 and T1 (to stop the sound), enables sleep-mode (which will put the micro into a
low-power mode), waits 1 second (to let things settle this is way longer than necessary, but that
won t hurt anything), turns off all output pins, makes all pins inputs (since this uses less battery
power), and then puts the micro to sleep.

OK, now look back to the top of the firmware. The include statements at the beginning let the C
compiler know where to look for some code that is pre-written, and comes with the compiler
(these are known as library functions).

The define

statements that come next define some constants used for the microcontroller s
hardware timers.

Next comes the Brainwave Table, described earlier.

Next comes the delay loop function, delay_one_tenth_ms . All it does is go around a loop a
specified number of times, performing no useful task except to delay for the correct amount of
time. It delays for a given number of 0.1ms (1/10 millisecond). So, for example, to delay 60
seconds, the input to this routine should be 600,000. One thing a little odd about this routine is
that I had to tell it to do something; otherwise the C compiler would see that it didn t actually
perform any useful task, and it would optimize the code away (this is because the C compiler we
are using is an optimizing compiler). In the delay loop I told the microcontroller to toggle an
output pin in Port D (which we don t use), which forces the compiler from optimizing the loop into
non-existence. The function uses a constant called DelayCount . I chose the value of
DelayCount=87 by trial and error so that the function delays very close to increments of 1/10ms.

The next function is called blink_LEDs . It has 3 inputs, and it does what the name implies. And
it does it at a given timing, and for a given Duration (all given in units of 1/10ms). Rather than
create a square-wave with equal High times and Low times, the function can make a square-
wave with a specified High time (called onTime) and a different Low time (called offTime). The
function turns on the LED, waits onTime (by calling delay_one_tenth_ms), turns off the LED, and
waits offTime (by calling delay_one_tenth_ms). It does this in a loop until the specified duration is
reached. The number of times to go through the loop is calculated by dividing the specified
duration by onTime+offTime. Let s look at an example to see how this works: if we want the
LEDs to blink at Beta Frequency of 14.4Hz for 60 seconds, then duration = 600,000, onTime =
347, and offTime = 347. Each run through the loop takes 34.7ms+34.7ms=0.0694seconds, so
we want to run through the loop for 600,000/(347+347)=864 times (truncated to an integer). The

10

total time will be: 864 * 0.0694sec = 59.96sec, which is pretty close to the specified 60 seconds
duration.

The next function is do_brainwave_element . It has one input, telling it which brainwaveElement
to play. (Keep in mind that in the C language, the first element of a table is 0, rather than 1.) This
function grabs the specified brainwaveElement from the brainwaveTab, and gets the
brainwaveElement s bwType and bwDuration. The function contains one section for each of the
four Brainwave Types. Each section is very similar. For example, let s look at the section for
Alpha (bwType= a). It sets the output compare register for T1 (which is called OCR1A) to 9714,
to start T1 with an Offset Frequency of 411.734Hz to create a binaural beat for the user at 11.1Hz
(which is Alpha waves). Then it calls the blink_LEDs function with the correct onTime and
offTime and total Duration to make the LEDs blink at Alpha frequencies for the given length of
time. Here s the math for the LED blink-rate:

onTime = 451 (0.0451seconds)
offTime = 450 (0.0450seconds)

So the LEDs blink on and off at this rate:
1 / (0.0451 + 0.0450)sec = 11.1Hz (which is Alpha waves)

Here is a table of values for each Brainwave Type:

Type OCR1A

Offset
Frequency

Fo

Binaural
Beat

Frequency
onTime offTime LED blink

Frequency

Delta
waves

9928 402.860Hz 2.219Hz 225.3ms 225.3ms 2.219Hz

Theta
waves

9836 406.628Hz 5.987Hz 83.5ms 83.5ms 5.988Hz

Alpha
waves

9714 411.734Hz 11.093Hz 45.1ms 45.0ms 11.099Hz

Beta
waves

9637 415.024Hz 14.383Hz 34.7ms 34.7ms 14.409Hz

You can see from the above table that for each brainwave type, do_brainwave_element is able to
blink the LEDs at a rate that is very close to the binaural beat frequency.

The final function is the main function, which was described earlier.

And that is it. Except for one gotcha. While I was creating the firmware, to make it easier to
debug I used a small brainwaveTab with only 5 brainwaveElements. Eventually I got the
firmware to work great with this small brainwaveTab. But then when I created the full
brainwaveTab, the firmware didn t work. What the?! After trying to figure out why the firmware
would not work with the full-sized brainwaveTab, I finally formulated a question and posted it to
the AVR user forum mentioned earlier. I got my answer within 30 minutes. It turns out that the C
compiler tells the microcontroller to transfer the whole brainwaveTab structure to RAM when the
firmware starts up. And that can not work because the microcontroller s RAM is only 128 bytes

and the brainwaveTab is way bigger than 128 bytes. The solution is to use some library functions
(pgm_read_byte and pgm_read_word) and a macro (PROGMEM) that come with the C compiler.
With these in place the firmware will not transfer brainwaveTab to RAM, but leaves it in program
ROM and the firmware works great! (This is described in the actual firmware, on page 12.)

The following pages show the complete firmware. You can download this firmware in its own file
(with the makefile), called slmFirmware.zip , from the makezine.com website where you
downloaded this document.

11

/*
Sound & Light Machine
Firmware
for use with ATtiny2313
Make Magazine issue #10
Mitch Altman
19-Mar-07
*/

#include <avr/io.h> // this contains all the IO port definitions
#include <avr/interrupt.h> // definitions for interrupts
#include <avr/sleep.h> // definitions for power-down modes
#include <avr/pgmspace.h> // definitions or keeping constants in program memory

#define TIMER0_PRESCALE_1 1
#define TIMER0_PRESCALE_8 2
#define TIMER0_PRESCALE_64 3
#define TIMER0_PRESCALE_256 4
#define TIMER0_PRESCALE_1024 5
#define TIMER1_PRESCALE_1 1
#define TIMER1_PRESCALE_8 2
#define TIMER1_PRESCALE_64 3
#define TIMER1_PRESCALE_256 4
#define TIMER1_PRESCALE_1024 5

/*
The hardware for this project is very simple:
 ATtiny2313 has 20 pins:
 pin 1 connects to serial port programming circuitry
 pin 10 ground
 pin 12 PB0 - Left eye LED1
 pin 13 PB1 - Right eye LED1
 pin 14 OC0A - Left ear speaker (base-frequency)
 pin 15 OC1A - Right ear speaker (Offset Frequencies for binaural beats)
 pin 17 connects to serial port programming circuitry
 pin 18 connects to serial port programming circuitry
 pin 19 connects to serial port programming circuitry
 pin 20 +3v
 All other pins are unused

12

 This firmware requires that the clock frequency of the ATtiny
 is the default that it is shipped with: 8.0MHz
*/

/*
The C compiler creates code that will transfer all constants into RAM when the microcontroller
resets. Since this firmware has a table (brainwaveTab) that is too large to transfer into RAM,
the C compiler needs to be told to keep it in program memory space. This is accomplished by
the macro PROGMEM (this is used, below, in the definition for the brainwaveTab). Since the
C compiler assumes that constants are in RAM, rather than in program memory, when accessing
the brainwaveTab, we need to use the pgm_read_byte() and pgm_read_dword() macros, and we need
to use the brainwveTab as an address, i.e., precede it with "&". For example, to access
brainwaveTab[3].bwType, which is a byte, this is how to do it:
 pgm_read_byte(&brainwaveTab[3].bwType);
And to access brainwaveTab[3].bwDuration, which is a double-word, this is how to do it:
 pgm_read_dword(&brainwaveTab[3].bwDuration);
*/

// table of values for meditation
// start with lots of Beta (awake / conscious)
// add Alpha (dreamy / trancy to connect with subconscious Theta that'll be coming up)
// reduce Beta (less conscious)
// start adding Theta (more subconscious)
// pulse in some Delta (creativity)
// and then reverse the above to come up refreshed
struct brainwaveElement {
 char bwType; // 'a' for Alpha, 'b' for Beta, 't' for Theta, or 'd' for Delta ('0' signifies last entry in table
 unsigned long int bwDuration; // Duration of this Brainwave Type (divide by 10,000 to get seconds)
} const brainwaveTab[] PROGMEM = {
 { 'b', 600000 },
 { 'a', 100000 },
 { 'b', 200000 },
 { 'a', 150000 },
 { 'b', 150000 },
 { 'a', 200000 },
 { 'b', 100000 },
 { 'a', 300000 },
 { 'b', 50000 },
 { 'a', 600000 },
 { 't', 100000 },

13

 { 'a', 300000 },
 { 't', 200000 },
 { 'a', 300000 },
 { 't', 300000 },

 { 'a', 150000 },
 { 't', 600000 },
 { 'a', 150000 },
 { 'b', 10000 },
 { 'a', 150000 },
 { 't', 600000 },
 { 'd', 10000 },
 { 't', 100000 },
 { 'd', 10000 },
 { 't', 100000 },
 { 'd', 10000 },
 { 't', 300000 },
 { 'a', 150000 },
 { 'b', 10000 },
 { 'a', 150000 },
 { 't', 300000 },
 { 'a', 150000 },
 { 'b', 10000 },
 { 'a', 200000 },
 { 'b', 50000 },
 { 'a', 200000 },
 { 'b', 150000 },
 { 'a', 150000 },
 { 'b', 200000 },
 { 'a', 100000 },
 { 'b', 250000 },
 { 'a', 50000 },
 { 'b', 600000 },
 { '0', 0 }
};

14

// This function delays the specified number of 1/10 milliseconds
void delay_one_tenth_ms(unsigned long int ms) {
 unsigned long int timer;
 const unsigned long int DelayCount=87; // this value was determined by trial and error

 while (ms != 0) {
 // Toggling PD0 is done here to force the compiler to do this loop, rather than optimize it away
 for (timer=0; timer <= DelayCount; timer++) {PIND |= 0b0000001;};
 ms--;
 }
}

// This function blinks the LEDs (connected to PB0, PB1 - for Left eye, Right eye, respectively)
// at the rate determined by onTime and offTime
// and keeps them blinking for the Duration specified (Duration given in 1/10 millisecs)
// This function also acts as a delay for the Duration specified
void blink_LEDs(unsigned long int duration, unsigned long int onTime, unsigned long int offTime) {
 for (int i=0; i<(duration/(onTime+offTime)); i++) {
 PORTB |= 0b00000011; // turn on LEDs at PB0, PB1
 delay_one_tenth_ms(onTime); // for onTime
 PORTB &= 0b11111100; // turn off LEDs at PB0, PB1
 delay_one_tenth_ms(offTime); // for offTime
 }
}

15

// This function starts the Offset Frequency audio in the Right ear through output OC1A (using Timer 1)
// to create a binaural beat (between Left and Right ears) for a Brainwave Element
// (the base-frequency of 400.641Hz is already assumed to be playing in the Left ear before calling this function)
// and blinks the LEDs at the same frequency for the Brainwave Element
// and keeps it going for the Duration specified for the Brainwave Element
// The timing for the Right ear is done with 16-bit Timer 1 (set up for CTC Mode, toggling output on each compare)
// Output frequency = Fclk / (2 * Prescale * (1 + OCR1A)) = 8,000,000 / (2 * (1 + OCR1A))
void do_brainwave_element(int index) {
 char brainChr = pgm_read_byte(&brainwaveTab[index].bwType);
 if (brainChr == 'b') {
 // PORTB &= 0b00001100; // (for debugging purposes only -- commented out for SLM)
 // PORTB |= 0b10000000;
 // Beta
 // start Timer 1 with the correct Offset Frequency for a binaural beat for the Brainwave Type
 // to Right ear speaker through output OC1A (PB3, pin 15)
 OCR1A = 9637; // T1 generates 415.024Hz, for a binaural beat of 14.4Hz
 // delay for the time specified in the table while blinking the LEDs at the correct rate
 // onTime = 34.7ms, offTime = 34.7ms --> 14.4Hz
 blink_LEDs(pgm_read_dword(&brainwaveTab[index].bwDuration), 347, 347);
 return; // Beta
 }

 else if (brainChr == 'a') {
 // PORTB &= 0b00001100; // (for debugging purposes only -- commented out for SLM)
 // PORTB |= 0b01000000;
 // Alpha
 // start Timer 1 with the correct Offset Frequency for a binaural beat for the Brainwave Type
 // to Right ear speaker through output OC1A (PB3, pin 15)
 OCR1A = 9714; // T1 generates 411.734Hz, for a binaural beat of 11.1Hz
 // delay for the time specified in the table while blinking the LEDs at the correct rate
 // onTime = 45.1ms, offTime = 45.0ms --> 11.1Hz
 blink_LEDs(pgm_read_dword(&brainwaveTab[index].bwDuration), 451, 450);
 return; // Alpha
 }

16

 else if (brainChr == 't') {
 // PORTB &= 0b00001100; // (for debugging purposes only -- commented out for SLM)
 // PORTB |= 0b00100000;
 // Theta
 // start Timer 1 with the correct Offset Frequency for a binaural beat for the Brainwave Type
 // to Right ear speaker through output OC1A (PB3, pin 15)
 OCR1A = 9836; // T1 generates 406.628Hz, for a binaural beat of 6.0Hz
 // delay for the time specified in the table while blinking the LEDs at the correct rate
 // onTime = 83.5ms, offTime = 83.5ms --> 6.0Hz
 blink_LEDs(pgm_read_dword(&brainwaveTab[index].bwDuration), 835, 835);
 return; // Theta
 }

 else if (brainChr == 'd') {
 // PORTB &= 0b00001100; // (for debugging purposes only -- commented out for SLM)
 // PORTB |= 0b00010000;
 // Delta
 // start Timer 1 with the correct Offset Frequency for a binaural beat for the Brainwave Type
 // to Right ear speaker through output OC1A (PB3, pin 15)
 OCR1A = 9928; // T1 generates 402.860Hz, for a binaural beat of 2.2Hz
 // delay for the time specified in the table while blinking the LEDs at the correct rate
 // onTime = 225.3ms, offTime = 225.3ms --> 2.2Hz
 blink_LEDs(pgm_read_dword(&brainwaveTab[index].bwDuration), 2253, 2253);
 return; // Delta
 }

 // this should never be executed, since we catch the end of table in the main loop
 else {
 // PORTB &= 0b00001100; // (for debugging purposes only -- commented out for SLM)
 // PORTB |= 0b00000010;
 return; // end of table
 }
}

17

int main(void) {

 TIMSK = 0x00; // no Timer interrupts enabled
 DDRB = 0xFF; // set all PortB pins as outputs
 PORTB = 0x00; // all PORTB output pins Off

 // start up Base frequency = 400.641Hz on Left ear speaker through output OC0A (using Timer 0)
 // 8-bit Timer 0 OC0A (PB2, pin 14) is set up for CTC mode, toggling output on each compare
 // Fclk = Clock = 8MHz
 // Prescale = 256
 // OCR0A = 38
 // F = Fclk / (2 * Prescale * (1 + OCR0A)) = 400.641Hz
 TCCR0A = 0b01000010; // COM0A1:0=01 to toggle OC0A on Compare Match
 // COM0B1:0=00 to disconnect OC0B
 // bits 3:2 are unused
 // WGM01:00=10 for CTC Mode (WGM02=0 in TCCR0B)
 TCCR0B = 0b00000100; // FOC0A=0 (no force compare)
 // F0C0B=0 (no force compare)
 // bits 5:4 are unused
 // WGM2=0 for CTC Mode (WGM01:00=10 in TCCR0A)
 // CS02:00=100 for divide by 256 prescaler
 OCR0A = 38; // to output 400.641Hz on OC0A (PB2, pin 14)

 // set up T1 to accept Offset Frequencies on Right ear speaker through OC1A (but don't actually start the Timer 1 here)
 // 16-bit Timer 1 OC1A (PB3, pin 15) is set up for CTC mode, toggling output on each compare
 // Fclk = Clock = 8MHz
 // Prescale = 1
 // OCR0A = value for Beta, Alpha, Theta, or Delta (i.e., 9520, 9714, 9836, or 9928)
 // F = Fclk / (2 * Prescale * (1 + OCR0A))
 TCCR1A = 0b01000000; // COM1A1:0=01 to toggle OC1A on Compare Match
 // COM1B1:0=00 to disconnect OC1B
 // bits 3:2 are unused
 // WGM11:10=00 for CTC Mode (WGM13:12=01 in TCCR1B)
 TCCR1B = 0b00001001; // ICNC1=0 (no Noise Canceller)
 // ICES1=0 (don't care about Input Capture Edge)
 // bit 5 is unused
 // WGM13:12=01 for CTC Mode (WGM11:10=00 in TCCR1A)
 // CS12:10=001 for divide by 1 prescaler
 TCCR1C = 0b00000000; // FOC1A=0 (no Force Output Compare for Channel A)
 // FOC1B=0 (no Force Output Compare for Channel B)
 // bits 5:0 are unused

18

 // loop through entire Brainwave Table of Brainwave Elements
 // each Brainwave Element consists of a Brainwave Type (Beta, Alpha, Theta, or Delta) and a Duration
 // Seeing the LEDs blink and hearing the binaural beats for the sequence of Brainwave Elements
 // synchs up the user's brain to follow the sequence (hopefully it is a useful sequence)
 int j = 0;
 while (pgm_read_byte(&brainwaveTab[j].bwType) != '0') { // '0' signifies end of table
 do_brainwave_element(j);
 j++;
 }

 // Shut down everything and put the CPU to sleep
 TCCR0B &= 0b11111000; // CS02:CS00=000 to stop Timer0 (turn off audio in Right ear speaker)
 TCCR1B &= 0b11111000; // CS12:CS10=000 to stop Timer1 (turn off audio in Left ear speaker)
 MCUCR |= 0b00100000; // SE=1 (bit 5)
 MCUCR |= 0b00010000; // SM1:0=01 to enable Power Down Sleep Mode (bits 6, 4)
 delay_one_tenth_ms(10000); // wait 1 second
 PORTB = 0x00; // turn off all PORTB outputs
 DDRB = 0x00; // make PORTB all inputs
 sleep_cpu(); // put CPU into Power Down Sleep Mode
}

Distributed under Creative Commons 2.5 Attrib. & Share Alike

